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Abstract. Two properties of self-avoiding walk networks, constructed by connecting the 
nearest-neighbour points of self-avoiding walks on the square lattice, are studied numeri- 
cally. The average end-to-end linear part of such networks is investigated, and is found 
to be proportional to the length of the walk. Secondly, random walks on this structure are 
studied and the associated spectral dimension of such networks is estimated to be 1.03 k0.03, 
which implies that the effect of such connections affects the spectral dimension only weakly, 
if at all. 

1. Introduction 

Self-avoiding walks (SAW) form a subset of Polya random walks in which no site has 
been visited more than once. Such walks model linear polymers in dilute solution. 
The excluded-volume effect is represented by self-avoidance in SAWS [ 11. However, 
distinct points on such a walk can be situated very close to one another. In the lattice 
version of this walk, steps are denoted by bonds of the lattice and the walk is represented 
by joining successive bonds. The minimum distance of separation between two sites 
on the walk is the lattice constant. One can make this simple structure somewhat more 
complex by connecting any two neighbouring sites on the SAW, and the resulting 
structure is called the SAW network (see figure l (a) ) .  We call these link bonds ‘bridges’, 
and bonds on the walk ‘streets’ [2]. This network is used to study a number of properties 
such as electrical conductivity, or the spectral distribution of low-energy phonons in 
linear polymers [4]. Recently there has been renewed interest in problems of diffusion 
on random structures [3], because of their application to these and related problems, 
such as the reptation problem in three dimensions introduced by de Gennes [l]. 

2. Linear part 

Consider an electrical circuit constructed by placing unit resistors both along the streets 
and the bridges of the SAW network. Now if a current I is introduced at the initial 
point and emerges from the final point of the network of length N, then within the 
network there is a distribution of currents. Let i be the current in a particular bond; 
then a bond can be labelled by a number cy = i / I  which has a distribution n(a). One 
can construct the moments M ( k )  = Z  akn(cy) and fit ( M ( k ) ) -  N * ( k )  where (. , .) 
denotes the average over different configurations of the SAW network. Here M ( 0 )  is 
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Figure 1. ( a )  A typical SAW network of 30 steps; ‘streets’ are shown by thick lines and 
‘bridges’ are shown by thin lines. ( b )  The linear part calculation. Both streets and bridges 
are shown by thick lines; bonds of the network with squares on both sides with the same 
number constitute the linear part; here it is of length 13 units. 

the total number of bonds of the network, and from an estimate of [(O) the value of 
the fractal dimension of the network can be obtained. M ( 2 )  is the end-to-end resistance 
of the network, and [ ( 2 )  is the average end-to-end resistance exponent. M ( m )  is the 
number of bonds in the network carrying the total current I, and constitutes the linear 
part of the network, while the corresponding exponent ((CO) is the linear part exponent. 
As (Y is less than or equal to 1, one has the inequality M ( 0 )  3 M ( 2 )  5. . .5 M ( c o )  and 
this implies a similar inequality for the exponents [(k). For percolation clusters this 
type of calculation has already been done [ 5 ] .  

The resistance of such networks has been studied by a direct renormalisation 
method, and the average resistance was predicted to be proportional to the chain 
length, which implies ( ( 2 )  = 1 [ 6 ] .  However, the same exponent is claimed to be 0.88 
by a small-cell real-space renormalisation group (RSRG) method [ 2 ]  and 0.92 by a 
computer simulation method [7]. We study here the linear part of this network, and 
estimate the value of the corresponding exponent [ (CO)  with the expectation that if 
the SAW network is a non-trivial one (with exponent 5 # 1) the non-triviality should 
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be most prominent for the linear part. Using the method of extensive computer 
simulations by both exact enumeration and Monte Carlo methods, we estimate the 
linear part exponent [(CO) = 0.99 * 0.01 which suggests that the exponent is very likely 
to be 1. This implies that the result of 5 ( 2 )  = 1 in [6] is entirely consistent with our 
result of ( ( 0 0 )  1. We now believe that the earlier result 5(2) = 0.92 is an effective 
exponent for small values of N [7]. 

The linear part between the endpoints of a SAW network consists of those bonds 
of the network which carry the total current. A second definition is: those bonds of 
the network which are common to all distinct self-avoiding walks between the endpoints 
of the SAW network constitutes the linear part. 

We use the second definition to estimate the linear part exponent of the SAW network 
for small values of walk length N (up to 18). Here we exactly enumerate all distinct 
SAWS on the square lattice for a particular walk length. For each walk configuration 
we first construct the SAW network by joining the nearest-neighbour sites on the walk. 
Then on that network we enumerate all distinct SAWS starting from the initial point 
and ending at the final point. We count ( a )  total number of bonds in the network 
M(O), ( b )  the minimum length sN of all these SAWS which is the minimum path between 
the endpoints and (c) the number of bonds of the network which are traversed by all 
walks contributing to the linear part M ( a ) .  We sum these quantities over all distinct 
walks and get Z M(O), Z sN and Z M(co)  (see table 1) .  The average minimum path 
(sN) has already been calculated (up to N =  14 on square lattice) in the literature in 
the context of the Ising model on a SAW network [8]. 

We used the method of differential approximants [18,19] to fit generating functions 
for the averages of these quantities assuming standard algebraic singularities, which 
implies the forms ( M ( 0 ) )  - Ne(’), (sN)- N ”  and (M(co) ) -  Ne‘“’. In this manner we 
used the protocol described in [18,19] to form exponent estimates and error estimates, 
and find ((0) = 0.996*0.005, x = 0.991 * 0.010 and ((CO) = 0.990* 0.010. 

We know that the average size of SAWS, ( R N ) ,  varies with walk length N as ( R N )  - N ”  
with v =+ in two dimensions [9]. Using this relation we can write (M(0))-(RN)S‘o’’” 
where 5(0)/ Y gives the fractal dimension of the SAW network. Our estimate of [(O) = 1 
implies that the fractal dimension of a SAW network is the same as that of ordinary 
SAW. This result is not unexpected since by the inclusion of bridges we only add mass 
to a particular length scale whereas to change the fractal dimension one should add 
mass to all length scales. Therefore with the values of t (0)  and [(a) both equal to 1 
we conclude that all intermediate moment exponents must be equal to 1. 

The linear part exponent ~ ( c o )  was also estimated by the Monte Carlo simulation 
method. Here we generate SAWS of large lengths ( N  up to 640) using the dynamic 
Monte Carlo method called the ‘pivot’ algorithm [ 101. We connect all neighbouring 
site pairs on a walk and thus get the SAW network. The linear part of this network is 
obtained by using the recently introduced algorithm of Roux and Hansen to find the 
backbone of a percolation cluster [ 1 I]. In this method we consider the clusters whose 
elements are unit squares on the lattice. Two such squares separated by a vacant bond 
are said to belong to the same cluster. A distinct cluster of such squares is surrounded 
by streets or bridges. We number these clusters of squares following the cluster counting 
algorithm [ 121. After this numbering we count those bonds of the network which have 
squares on both sides with the same number. These bonds constitute the linear part 
of the network (see figure l (b) ,  which has linear part 13). 

Using this method we have calculated the average linear part ( M ( m ) )  and the 
mean-square end-to-end distance ( R L )  of SAW networks of lengths N = 28,32,40,48, . . . , 
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Table 1. Exact enumeration data ( a )  for the sum over linear part (I: M(ca)) ,  minimum 
path (I: s N )  and total mass (I: M ( 0 ) )  for S A W  networks. For the Monte Carlo data ( b ) ,  
the average linear part ( M ( c o ) ) ,  the mean-square end-to-end distance ( R j )  and the number 
of configurations considered is given. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

1 
6 

21 
76 

249 
814 

2 521 
7 824 

23 473 
70 590 

207 345 
610 356 

1 765 959 
5 119006 

14 643 993 
41 958 852 

118 976 633 
337 823 486 

1 

6 
23 
84 

283 
930 

2 921 
9 096 

27 507 
82 930 

244 819 
722 116 

2 096 603 
6 087 290 

17 458 887 
50 090 544 

142 317 089 
404 543 142 

1 
6 

29 
. 108 

393 
1298 
4 271 

13 312 
41 469 

125 042 
376 747 

1111 144 
3 274 475 
9 505 054 

27 573 041 
79 086 964 

226 727 667 
644 301 026 

Number of 
( b )  N configurations ( M ( W ) )  ( R 3  

28 
32 
40 
48 
64 
80 
96 

128 
160 
192 
256 
320 
384 
512 
640 

1000 000 
5000 000 
5000 000 
5000 000 
6000 000 
5000 000 
5000 000 
3500 000 
2500 000 
2500 000 
3500 000 
1550 000 
1550 000 
1550 000 
1550 000 

16.371 
18.581 
22.989 
27.406 
36.200 
45.008 
53.795 
71.430 
88.998 

106.62 
141.80 
176.84 
211.93 
282.68 
352.7 

118.06 
143.94 
200.20 
262.11 
401.62 
559.77 
734.22 

1127.7 
1573.0 
2 065.6 
3 174 
4 429 
5 825 
8 973 

12 518 

640. The number of configurations considered for each length varied from 100 000 to 
500 000 (see table 1). A log-log plot of ( M ( c o ) )  against N gives a value of t ( co )  = 
0.99 f 0.02 (see figure 2), while a similar plot of ( R k )  against N gives v = 0.745 * 0.01 
(see figure 3). 

3. Spectral dimension 

Recently diffusion on different fractal structures and the associated spectral dimensions 
of such processes have been studied with great interest [13]. The spectral dimension 
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Figure 2. Log-log plot of average linear part ( M ( f f i ) )  against walk length N with a slope 
[(a) = 0.99 f 0.02. 

4 4  
3 4 5 6 I 

Ln(N) 
Figure 3. Log-log plot of mean-square end-to-end distance ( R L )  against walk length N 
which gives v = 0.745 * 0.010. 

d,  of some proteins has been measured by electron-spin-lattice relaxation experiments 
via the temperature dependence of the relaxation rate [14 ] .  The spectral dimension 
describes the variation of the phonon density of states p ( w )  - c o d s - ’  in the limit w + 0. 
A value of d ,  = 1.65 * 0.04 was obtained which is close to the value of the fractal 
dimension d f = $  and the conjecture was made that d , =  d f  [14 ] .  

This result was used to explain the role of additional ‘massless springs’ present in 
protein molecules (e.g. hydrogen bonds) and thus to suggest modelling this system by 
a SAW network with bridges [ 4 ] .  It is known that the phonon problem is equivalent 
to a diffusion problem of a random walker moving on a fractal lattice with the mean 
square end-to-end distance (R:) varying with time t as t2’ where 2 v = d , / d f  [20 ] .  
Therefore the dimension seen by a random walker is d ,  = 1 /  v = 2 d f / d , .  In the absence 
of the bridges, the SAW structure is linear and its spectral dimension is 1 .  However, d,  
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may be different for an SAW network due to the presence of bridges. It is argued in 
[4] that the number of bridges in a SAW network is so high that the diffusing particle 
will see the underlying Euclidean space which implies that d, should be equal to df.  
This implies in two dimension that d, should have a value of $. A Monte Carlo 
simulation has been done with random walks of 70 steps on SAW networks of 75 steps 
and v = 0.72 was obtained which implies d, = 0.96 [2]. Alternatively, from a resistance 
measurement and subsequent application of scaling arguments it was claimed that 
d, = 1.04 [7], while d, = 1 was claimed in [ 151. 

Recently this problem was also studied by using a Levy flight argument [16]. A 
jump of the walker across a bridge is considered as a step of length equal to the length 
I of the segment cut out by the jump along the walk. The probability distribution of 
such jumps is considered to be the same as the loop distribution deep inside the SAW 

chains, and is described by P ( I )  - P', and the spectral dimension was estimated to 
be d, = 2 ( p  - 1)/(3p - 5 ) .  With a value of p = 2.95 k0.20 in 2d [ 171, d ,  is estimated 
to be 1.01. 

For this diffusion problem we simulate SAWS up to 10 000 steps using hash coding 
techniques in conjunction with the pivot algorithm from which we construct our SAW 

network. We start from an initial rod configuration and consider one configuration 
every 50th move. We discard the first 240 000 such configurations to get an equilibrium 
configuration. After that we generate a large number of SAW networks (up to 70 000 
for N = 10 000) for diffusion. We start a blind random walker? from the centre point 
of the walk, and it makes 100 steps through occupied sites (both streets and bridges 
are allowed). For each SAW network 100 such random walks are simulated. Data for 
the mean square end-to-end distance is accumulated in an array which is then averaged 
and analysed. We analysed the data by the ratio method with Neville-Aitken extrapola- 
tion [19] after applying a mild Euler transformation to eliminate the effect of the 
loose-packed lattice structure. We found the following exponents as a function of SAW 

length: 2v(1250) = 0.773*0.010,2v(2500) =0.745*0.010,2v(5000) =0.750*0.010 and 
2v( 10 000) = 0.762 * 0.008. This suggest an increasing sequence of estimates of 2v with 
increasing SAW length for walks longer than 1250 steps, though the evidence is not 
strong enough to rule out the value of v = 2. Our preferred value is 2v = 0.77 * 0.03. 
Using the relation d, = 2df v we find d, = 1.03 * 0.03. 

4. Conclusion 

In this paper we have made a numerical study of two properties of SAW networks on 
a square lattice. In the first part, the average linear part and the average total number 
of bonds of the network are calculated, and the associated exponents are estimated. 
Both the exponents are found to be equal to 1 which implies that in spite of the 
presence of bridges the SAW network is basically a linear structure. However, the 
bridge connections still have some effect in some other phenomena, e.g. diffusion on 
such networks as those studied in the latter part of the paper. We estimate the spectral 
dimension of the network to be 1.03kO.03 which shows that the effect of bridges, if 
any, is quite small. 

t A blind random walker attempts steps in all possible lattice directions, whether allowed or not and pauses 
if a forbidden direction is chosen. 
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